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Cerebral Magnetic Resonance Image Segmentation Using
Data Fusion

Jagath C. Rajapakse, Charles DeCarli, Alan Mcl.aughlin, Jay N. Giedd, Amy L. Krain,
Susan D. Hamburger, and Judith L. Rapoport

Objective: A semiautomated method is described for segmenting dual echo ;
MR head scans into gray and white matter and CSF. The method is applied to E '
brain scans of 80 healthy children and adolescents. i

Materials and Methods: A probabilistic data fusion equation was used to :
combine simultaneously acquired T2-weighted and proton density head scans
for tissue segmentation. The fusion equation optimizes the probability of a
voxel being a particular tissue type, given the corresponding probabilities from
both images. The algorithm accounts for the intensity inhomogeneities present .
in the images by fusion of local regions of the images. ey

Results: The method was validated using a phantom (agarose gel with iron :
oxide particles) and hand-segmented images. Gray and white matter volumes
for subjects aged 20-30 years were close to those previously published. White
matter and CSF volume increased and gray matter volume decreased signifi-
cantly across ages 4-18 years. White matter, gray matter, and CSF volumes
were larger for males than for females. Males and females showed similar
change of gray and white matter volumes with age.

Conclusion: This simple, reliable, and valid method can be employed in
clinical research for quantification of gray and white matter and CSF volumes
in MR head scans. Increase in white matter volume may reflect ongoing axonal
growth and myelination, and gray matter reductions may reflect synaptic prun-

ing or cell death in the age span of 4-18 years.
Index Terms: Brain—Magnetic resonancé imaging—White matter—Gray

matter—Cerebrospinal fluid—Magnetic resonance imaging, physics and instru-
mentation.
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The boundaries of anatomically and functionally While important measurements of microscopic
distinct components of the brain are often defined brain anatomy can be done only with postmortem in
by the junctures of white matter, gray matter, and studies (1), postmortem material has several disad- 5
CSF. Since brain structure is determined by these vantages: CSF is not available, and once removed
boundaries, the ability to accurately identify and from the intracranial cavity and extracerebral fluid, 1
quantify different tissue types is critical to quanti- the brain collapses on its weight, distorting in vivo -
tative studies of brain morphology. Analysis of morphometric properties. CT techniques have been ;
changes in tissue structures and characteristics may applied to separate gray matter, white matter, and f
provide important clues to understanding normal CSF, but with limited success due to poor resolu- :
and abnormal brain development. tion (2,3). In contrast, MRI offers high spatial res- e
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Image segmentation is the process of separating
image pixels into homogeneous regions of similar
characteristics. A variety of segmentation methods
are available (5,6). Brain MR image segmentation
into gray matter, white matter, and CSF may be
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done on single channel (7,8) or multiple channel
data (9-23). Single channel data usually involve T1-
weighted images, which give a good separation of
gray and white matter. Multiple channel methods
utilize more than one MRI property of tissues to
enhance discriminating power and may provide a
more sensitive basis for tissue differentiation.

Multiple channel data consist of a combination of
two (9-16) or more (17-23) sets of images of Tl-
weighted, T2-weighted, and proton density (PD) im-
ages. Different techniques have been applied to
handle multichannel MR image segmentation: (a)
Two images are derived from the input images us-
ing discriminant analysis (9,10) or image algebra
(11,12), one image to optimize the separation of
brain matter and CSF and the other to optimize the
separation of gray matter and white matter. A sim-
ple thresholding is then applied to separate different
tissue types. (b) A set of low level rules is defined to
classify different tissue types (13). (c) Tissue type
separation is carried out using 2D histograms or
scatter plots (14). (d) In multispectral analysis, the
input data are considered to be multidimensional
vectors where components in the vectors represent
the corresponding voxel data from the images; the
input vectors are then classified using a supervised
or unsupervised classification system (15-20). (e)
Input is considered as a multidimensional variable
and the input variable is then classified using statis-
tical approaches such as maximum likelihood and
maximum a priori estimation techniques (21,22). (f)
Multiple channel images are combined or processed
to obtain more images or features to increase the
input feature space for discrimination (23) and then
classified using a higher dimensional classifier.

In this report, we present a data fusion technique
based on a probabilistic framework to segment MR
image data available in two channels in the form of
T2-weighted and PD images. Data fusion refers to
the combination or integration of more than one
data set measuring the same physical event to get
better information than that from any single set of
data. Data fusion techniques have been previously
considered in robotic vision, automatic target rec-
ognition, and medical imaging (24,25). Here, we in-
troduce a probabilistic data fusion equation to com-
bine dual echo MR images to segment cerebral tis-
sues into gray matter, white matter, and CSF. This
method functions to optimize the probability of a
voxel location being a particular tissue type given
information from both images.

A second objective of this study was to examine
the maturation of white and gray matter and CSF
during brain development in childhood and adoles-
cence. Although most of the major anatomical de-
velopment of the brain is completed in the first post-
natal year, the configuration of the adult human
brain continues to change throughout life (26,27).
Previous quantitative studies of gray and white mat-

ter in the human brain have concentrated mostly on
older age groups (1,10,11) and on neonates and in-
fants (27,28), although a few studies have included
our age group (29,30). Hence, quantitative analysis
of tissue types in the understudied age span of 4-18
years permits scrutiny of brain development during
the period of sexual maturation and across the age
period in which childhood neuropsychiatric disor-
ders emerge.

Although gray/white/CSF segmentation methods
have been introduced in earlier studies, they have
been applied only to smaller data sets. Most of them
have been tried only on a small pumber of slices
because of their instability when applied to larger
data sets. As cross-sectional brain developmental
data should necessarily be large to account for the
complexity and individual variability of the human
brain, an accurate and a stable segmentation
method is needed that can be applied to a large data
set for gray and white matter and CSF separation.
We were motivated to introduce the present method
because the available methods (10,11) did not pro-
duce consistent segmentation over our data base.

Reliability and a phantom validation study for the
method are presented. Because of the unavailability
of postmortem studies and limited imaging data for
children, our gray and white matter and CSF vol-
umes determined from segmentation of 13 MR head
scans from patients ranging in age from 20 to 30
years were compared with previously published re-
sults for this age group.

SUBJECTS AND HARDWARE

MRI scans of brain were performed on 37 healthy
male (mean age 11.98 + 3.19 years) and 43 healthy
female (mean age 10.87 = 3.76 years) subjects with
ages ranging from 4 to 18 years (mean age = SD =
11.38 =+ 3.53 years). Individuals with physical, neu-
rological, or lifetime history of psychiatric disorders
were excluded. {Details of subject recruitment and
demographics are presented elsewhere (D]

All subjects were scanned using a GE 1.5 T Signa
scanner. A variable echo multiplanar sequence in
the axial plane was obtained (TE = 17 and 83 ms,
TR = 2,600 ms, acquisition parameters = 192 x
256, NEX = 2, FOV = 24 cm) for the head. Slice
thickness was 5 mm with 2.3 mm skip between suc-
cessive cross-sections. The output images consisted
of 36 interleaved 256 x 256 slices of PD-weighted
images (TE = 17 ms) and T2-weighted images (TE
= 83 ms). Voxel data have a resolution of 16 bits,
which we converted into 8 bits before further pro-
cessing to speed up processing and to reduce mem-
ory requirements. For volumetric analysis, the im-
ages were transferred to a Sparc 10 workstation and
separated into PD- and T2-weighted slices.
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PREPROCESSING

Our method segments only brain pixels, and
hence it is necessary to separate the brain pixels
from nonbrain pixels. Since PD images give the best
resolution between the brain and the cranial bound-
ary, PD images were selected to shell the brain.
*‘Shelling’” here refers to removal of all nonbrain
material such as bone, skull, and face muscles from
the images, leaving only brain material. It also re-
moves the extracerebral CSF. Shelling was done
using the auto-trace facility available in the soft-
ware ANALYZE (32), in which a seed point is se-
lected and then the user interactively manipulates a
threshold slider to change the range of the threskold
at the selected seed pixel. A trace is automatically
drawn at the point where the threshold transition
takes place, and the region inside or outside the
trace may then be deleted from the image. Multiple
seed points may also be specified. One or more
seeds are planted on the brain matter, the threshold
is adjusted for each slicé, and nonbrain matter is
deleted. The shelled PD images then serve to mask
nonbrain tissues from T2 images. Shelled brain im-
ages include both cerebellum and brain stem.

FUSION SEGMENTATION

Theory

The input data can be represented as a set {P,T}

where P and T represent mappings of the PD image
and the T2-weighted image, respectively. Segmen-
tation is done slice by slice, one slice at a time. We
will assume that the images are stacks of 2D images
with rectangular pixel lattices of size n X m, where
n and m are integers. Then, if x is a pixel location in
a given slice, xe{(0,0),(0,1), . . . ,(n,m)}. We will de-
note the image intensity of the PD image at pixel
location x as P(x) and that of the T2-weighted image
as T(x).

We consider that the brain matter consists mainly
of three tissues: gray matter, white matter, and
CSF. Although most of the brain voxels are pure
voxels, i.e., voxels containing only one type of tis-
sue, the voxels at the tissue boundaries may contain
more than one tissue type. These mixed pixels cre-
ate a statistical error causing partial volume effects,
which will be discussed later. When a particular
voxel is occupied by more than one tissue type, it is
assumed that the voxel will be occupied completely
by the most probable tissue type. Consequently, we
can think of image pixels in a given image slice con-
sisting of three mutually exclusive and exhaustive
sets: white matter (W), gray matter (G), and CSF
(F). W, G, and F are disjoint sets of pixels in the
image.

Statistically, the feature that distinguishes one
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tissue from the other is the probability distribution
of the intensity that each tissue type produces over
the image. Since the pixel intensities are influenced
by random noise and correlated with the physical
relaxation processes that are responsible for creat-
ing the intensity values, we assume Gaussian distri-
butions for the probability distribution of intensities
in each tissue (8). DeCarli et al. (33) used a skewed
Gaussian distribution for their single channel im-
ages to account for the partial volume effect. How-
ever, it will be shown later that the present algo-
rithm partially accounts for the volume averaging
effect.

The statistical parameters that are associated
with tissues can be characterized by means and
standard deviations of the assumed Gaussian distri-
butions. We denote the mean and the standard de-
viation of the tissue class C in image I at pixel lo-
cation x by p, (x) and o, ~(x) respectively, where
Ce{W,G,F} and Ie{P,T}. The probability that the
pixel at location x in image I belongs to tissue class
C is denoted by p; ~(x|I). The intensity in image I at
location x is denoted by I(x). With our notation and
the Gaussian distribution assumption, the probabil-
ity distribution of tissue types in the two images can
be written as

I{I(X) —p, d.r)} 2
2 oo ( 1 )

prcx|D = exp 2

271'021) clx)

where Ie{P,T} and Ce{W,G,F}.

-Equation 1 defines the probabilities of a particu-
lar pixel being white or gray matter or CSF, given
image intensity and distribution parameters. Some
means is needed for combining these probabilities
to obtain the probabilities for each tissue type given
both sets of image data. The fusion equation
(proved in Appendix A) provides a means of com-
bining data probabilistically when independent in-
formation is available from more than one set of
data. We will approximately use the fusion equation
to combine probabilities implied by both images. If
pc(x|P,T) is the probability of a pixel at location x
being tissue class C given both PD image and T2-
weighted image, then the fusion equation can be
written as

PC(XFP:T) =k 'PP,C(XIP) 'PT,C(X|T) 2

where £, is a real positive constant and Ce{W,G,F}.

The fused probability given by Eq. 2 refers to the
probability of the pixel at location x being class C
jointly implied by intensities of both the PD image
and the T2 image. This is different from the proba-
bility calculated as p(x|y) with y being a multidi-
mensional vector, y = [P(x),T(x)], as considered in
the multispectral analysis or multidimenstional fea-
ture approach (15-20,23,34). The fused probability
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pcxIP,T) calculated by multiplying the individual
probabilities given by each sensor gives a probabil-
ity estimate that is better than p(x|7) and p(x|P)
for classification. This value is theoretically opti-
mum when the two images are fully independent.

Tissue type is assigned to a particular pixel loca-
tion according to maximum likelihood criteria (35).
That is, the tissue type is the one whose probability
is the highest given the image data from both the
images. Then, pixel location x is considered to be
white matter if

pW(x|P’D > [)G(st,T) and
pwx|P.T) > px|P,T) 3)

and it is considered to be gray matter if

pcx|P,T) > pux|P,T) and
P[P, T) > pu(x|P,T) (4)

Otherwise it is considered as CSF.

Since the assignment of tissue type is made using
the information from both images, greater accuracy
is achieved than with information from only one
source. The fusion equation always gives a better
probability value for a pixel to be particular tissue
type than given by the individuaj images. The fusion
equation could be easily applied to combine more
than two input images when they can be considered
independent.

Application te Dual Echo MR Images

PD images and T2-weighted images in a double
echo sequence are spatially registered since they
are acquired simultaneously using the same pulse
sequence and therefore are suitable for probabilistic
data fusion assuming two sensor channels. Under
the present imaging conditions, PD and T2-
weighted images are not purely independent. The
lack of complete independence, however, does not
invalidate the fusion equation, which always gives a
better probability than that obtained by the individ-
ual images, as we will show later. Any dependen-
cies between the images act as redundant informa-
tion and lower the efficiency of the fusion process.

At the present time, we are interested primarily in
the segmentation of gray matter and white matter in
normal brains (i.e., brains without the presence of
any abnormalities such as tumors). In this regard,
we assume a three class model, where CSFs in the
two images are orthogonal. We recognize that other
brain tissue types exist, however. Other brain tissue
types include blood vessels and hyperintense white
matter signals. Due to the low signal values on PD
and T2 image data, vascular structures in the brain
will be classified as white matter. The percent error
due to this misclassification is, however, very
small. In the present version of this method, hyper-
intense white matter signals are misclassified as

gray matter. The presence of hyperintense white
matter lesions did not significantly affect our re-
sults, as clinical review of each MR image revealed
a low prevalence of white matter hyperintense le-
sions in our subject population.

Because of the inhomogeneities in the magnetic
field and RF coil sensitivity of the imaging scanner,
regional intensity variations are often present in MR
image slices. This has been a major obstacle for
segmentation of the tissues based on intensities of
the pixels. Our images did not show severe inho-
mogeneity artifacts, and the subtle inhomogeneities
present seemed smoothly varying. The parameters
of the distributions were locally evaluated by con-
sidering a local neighborhood at the pixel as the
neighborhood pixels are equally affected by the in-
homogeneities present in the scanner. The algo-
rithm does not depend on a global threshold or any
parameters computed over the whole image. In-
stead, the parameters for the Gaussian distributions
are calculated by considering a local neighborhood
window at each pixel. Since the distributions are
determined at each pixel separately, smooth spatial
variations of intensities do not affect the segmenta-
tion. Further, slice-by-slice segmentation alleviates
problems with intensity drifts in the axial direction.
As expected, the segmented images did not show
the effect of magnetic field or RF inhomogeneities.

Implementation

The fusion algorithm is implemented in an itera-
tive manner. In each iteration, the decisions for tis-
sue classes are made at every pixel location by com-
paring the probability distributions of tissue types
as in Eqgs. 3 and 4. The probabilities are calculated
using the fusion Eq. 2 and the individual probabili-
ties are computed using Eq. 1. The parameters of
the distributions are initialized at the beginning of
the iterations, and after each decision about the tis-
sue class is made, the parameters of distributions
are updated. At each pixel location, parameters for
the distributions are calculated considering a local
neighborhood D, which consists of pixel locations
with a window of size 25 x 25.

Initially, the distribution parameters for the tis-
sues are determined by the parameters of the two
input images. If pp(x) and op(x) are the mean and
the standard deviation of the intensities at pixel lo-
cation x in PD image, then the parameters of the PD
images are initialized as follows:

mp,(x) = pp(x) + ky + op(x) (5
ppwlx) = pp(x) — ky - op(x) 6)
wp Fx) = ky - op(x) 7

op(x) = opwlx) = oppx) = k3 - ap{x)  (8)
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Similarly, if p,{x) and oz{x) are the mean and the
standard deviation of the intensities of the T2 im-
age, the parameters of the T2 image are initialized
as follows:

wr.x) =prx) + ky - op(x) )]
prw(x) =pg(x) = ky - orx) (10
P'T,F(-x) = Ipax — ki - or(x) (an

orgx) = orwx) = o) = k- oplx) (12)

where k, and k; are real positive constants and I,
is the maximum intensity of the image. k, = k3 =

- 0.5 worked well with our images. k, and k; deter-
mine the initial separation and shapes of the distri-
butions. It should be noted here that the gray matter
is brighter than white matter in both images and
CSF is the brightest tissue type in the T2 image and
the darkest in the PD image. Representational slices
of the PD and T2-weighted images are shown in
Fig. 1.

When a decision is made at a pixel location to be
of particular tissue class, the parameters of the dis-
tribution for that tissue class are updated. When
ne(x + v) is the number of pixels already classified
as tissue class C, at the pixel location x + v where
veD, and a decision at pixel location x is taken to be
of tissue type C, then the parameters of the distri-
butions for the PD image and the T2 image for tissue
class C are updated within a window D, as follows:

nelx + v) - ppclx +v) + PO (13)
nelx + v) + 1

pp,clx + v} =

ne(x + v) - prelx + v) + T(x) (14)

prolx +v) =

ne(x + vy + 1

U%)vc(x + V) =

1a,b KR

FIG. 1. Representative MR brain image slices: proton density
image slice (a); T2-weighted image slice (b).
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nelx + v) cr%,c(x + v) + [P(x) — ppclx + VI
ne(x +v) + 1

(15
Ug’c(x + 'l)) =

ne(x + v) - adclx + 1) + [T = prcx + vF
ne(x + vy + 1

(16)
ne(x +v) = nelx +v) +1 a7

where Ce{W,G,F} and veD. Variations of this pa-
rameter updating scheme have previously been
used by a number of classification algorithms. A
global version of a similar parameter updating
scheme was used in unsupervised K-means algo-
rithm (34). In the global version, one set of distri-
butions is considered over the whole image, and the
parameters of these distributions are updated at
each point whenever a decision is made. The global
scheme runs much faster than the local updating of
the variables, but is sensitive to local changes of
intensity over the image.

The steps of the implementation of the segmen-
tation procedure are shown in algorithmic form
herein for implementation in a high level language.

For every slice in the image
Change of error = HIGH
Find values pp and o from PD image and p.; and
oy from T2 image
Initialize p,; ¢ and o, ¢ for Ce{G,W,F} and Ie{P, T}
using Eqgs. 5-12 at each point
While (change of error = €)

For each pixel location x in the image
Compute p, (x| for Ie{P, T}, and Ce{W,G.F}
using Eq. 1
Using the fusion equations in Eq. 2, compute
pW(x‘P’DS p(}(lerDv and pF(x‘P)T)

If [py(x|P,T) > PG(X\P’T)] and [pw(x‘P,T) >
pF(-xiP’D]
Assign pixel x white matter label W)
Update wpw, Wrw> Opw: Orw, and ny
within a window D, as in Egs. 13-17
Else if [pg(x|P.T) > pw(x|P,T)] and
PP, T) > pexiP, D]
Assign pixel x gray matter label (G)
Update ppg MG Opc Orc: a0d ng
within a window D, as in Egs. 13-17
Else
Assign pixel x CSF label (F)
Update pp r Wrr 9pF OTF and ng
within a window D, as in Egs. 13-17

Continue for all pixels in the image

Error = mean square value of the difference

between tissue means and pixel intensities

Continue until the change of error is small enough
Continue for all the slices in the image.
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The error is computed as the mean square error
between the mean tissue intensity and the intensity
of the pixel. The classification of pixels over an
image slice continues until the error stabilizes and
the change of error drops below a certain small
value. For most of the images, after three or four
iterations over the images, the error became stabi-
lized.

At the end of the segmentation, gray and white
matter and CSF images are stored separately and
the volumes are computed. It should be noted that
brain volume here includes both cerebellum and the
brain stem. The brain stem extends down to the
foramen magnum.

RESULTS
Reproducibility

The reproducibility of our method depends to a
large degree on the shelling process of the head
scan. Shelling was done by*manually adjusting the
intensity threshold until there was enough resolu-
tion between the brain and the intracranial cavity.
Since the rest of the method is automated, the reli-
ability of the segmentation method is affected only
by the brain shelling process. To assess the intra-
operator reliability, the same operator segmented
10 scans of head twice. The interclass correlation
coefficient values for the intrarater reliabilities were
gray matter = 0.95, white matter = 0.94, and ven-
tricular CSF = 0.89. To obtain the interrater reli-
ability, the same 10 images were shelled by two
different raters and then applied to the segmenta-
tion algorithm. Interclass correlation coefficient
values for interrater reliabilities for gray matter,
white matter, and CSF were 0.94, 0.92, and 0.88,
respectively.

Validation Against Hand-Traced Images

To validate our results and to examine data from
our age range, another segmentation was made with
manual tracing of gray matter and white matter
guided by one of the authors with extensive expe-
rience in brain image analysis. For this purpose,
three slices were separated from a representative

brain, and gray and white matter and CSF regions
were manually outlined on each slice. The hand-
segmented tissue volumes and the volumes ob-
tained by the fusion segmentation algorithm are
shown in Table 1 with their differences.

Phantom Validation

Validation requires a composite phantom, with
the relative amplitude of the MRI signals from dif-
ferent regions approximating that for gray matter,
white matter, and CSF in both PD and T2 images.
We made up agarose gels (9,36) (192 wt/vol) with
varying concentrations of dextran-coated super-
paramagnetic iron oxide particles (AMI-25 parti-
cles; Advanced Magnetics) having an average par-
ticle diameter of 500 A. These particles are soluble,
do not aggregate, and are large enough so that they
should not diffuse across gel boundaries. After ex-
perimenting with test phantoms, we found that 1%
(wt/vol) agarose gel with total iron concentrations
of 6.7, 33, and 67 uM were suitable for simulating
CSF, gray matter, and white matter, respectively.
Increasing iron concentration decreased T1 and T2
(37). The decrease in T2 caused a decrease in the
intensity in the T2 image. The decrease in T1
caused an increase in the intensity in the PD image,
because in the absence of iron particles the signal
was partially saturated.

The phantom consisted of a cylindrical plastic
bottle with layers of 1% agarose containing different

- iron_oxide concentrations. The layers were formed

by pouring molten agarose gel containing a specific
iron oxide concentration into the bottle, allowing it
to gel, and then pouring molten agarose with a dif-
ferent iron oxide concentration on top. We chose
this simple configuration because our segmentation
method is ‘‘pixel based’ and is not sensitive to
structural details.

Dual echo images of the phantom were acquired
in a plane parallel to the long axis, under the same
conditions used for human subjects. One pair of
slices through the same region of the PD and T2
images is shown in Fig. 2. Images were segmented
by the fusion segmentation algorithm, and the vol-
umes of different layers were computed. Actual and

TABLE 1. Validation of gray matter and white matter obtained by fusion segmentation method versus hand tracing

Gray matter White matter CSF
7 Difference Difference Diffef;:E
Slice level Manual Fusion (%) Manual Fusion (%) Manual Fusion (%)
Midventricular ) 71.00 69.70 1.8 62.04 63.47 -2.2 2.70 2.57 4.8
Basal ganglia 56.72 55.39 2.3 60.92 62.04 —1.8 2.19 2.41 -9.8
Lower cortex 48.09 50.01 3.9 49.83 47.55 4.6 1.16 1.32 13.4

The volumes are in voxels. Percentage difference = ratio of (hand-traced volume - volume obtained by fusion algorithm) to hand-traced

volume.
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FIG. 2. Phantom images: (a) Proton density image slice and
(b) T2-weighted image slice taken parallel to the long axis of
the phantom.

measured volumes of different gel layers are shown
in Table 2.

Pediatric MR Data

The segmentation algorithm was implemented in
the C/Unix environment and applied to the MR
brain scans of 80 normal children (43 females and 37
males) aged 4-18 years. Each head image was
shelled slice by slice, which took ~ 10 min per brain
on our Sparc 10 workstation. After head scans were
shelled, both images were applied to the segmenta-
tion program. The output gray matter, white matter,
and CSF volumes were stored and measured. Sam-
ples of the segmented images of gray matter, white
matter, and CSF of three slices are shown in Fig. 3.

Probability maps over image slices taken at a par-
ticular level of the brain, before and after fusion, are
shown in Fig. 4. In probability maps, intensity of a
pixel is proportional to the probability of that pixel
being the corresponding tissue type. Maps of PD
and T2 images were obtained before the fusion took
place, assuming local Gaussian distributions as con-
sidered in Eq. 1. As seen, the T2 image better rep-
resents white matter, whereas the PD image better
represents gray matter. The fused image probabili-
ties optimize for classification of both gray matter
and white matter.

Scatterplots and regression lines for CSF, gray
matter, and white matter volumes in milliliters ver-
sus age are shown in Fig. 5a, b, and ¢, respectively,
for 80 subjects. As seen, there is significant age-

TABLE 2. Actual and measured volumes of different
regions of phantom

Sample Actual Measured Difference
region volume (ml) volume (ml) (%)
White 200.0 198.0 1.0
CSF 200.0 194.7 2.6
Gray 400.0 407.3 1.8

The different regions were composed of 1% agar gels with
varying concentration of dextran-coated iron oxide particles.
The total iron concentrations in the different regions were
“‘white matter,”’ 67 uM; “CSF.” 6.7 uM; “‘gray matter,"” 33
TR
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related increase in white matter volume (p < 0.001)
and CSF volume (p < 0.001) for females. The de-
crease in gray matter volume was not significant. In
males, the increase of CSF volume was significant
(p = 0.001}, but neither the white matter increase
nor the gray matter decrease reached significance.
The gray matter/white matter volume ratios were
computed as shown in Fig. 5d. This ratio decreased
significantly with age (for females p < 0.001 and for
males p = 0.003).

To account for the effect of brain size on tissue
volumes, the gray matter, white matter, and CSF
volumes were normalized by dividing each volume
by the total brain size. When this was done, the
white matter/brain ratio significantly increased (p =
0.026 for males and p < 0.001 for females) and the
gray matter/brain ratio significantly decreased (p <
0.001 for females and males) with age. The CSF/
brain ratio increased significantly with age both in
males and in females (p < 0.001). The regression
coefficients were all linear, and the higher order
regression coefficients were not significant.

The slopes of the regression lines for gray matter
volume (tr = 3.29, p = 0.004), white matter volume
(r = 3.93, p = 0.001), and total brain volume (¢ =
5.50, p < 0.001) were significantly larger for males
than females across all ages. There were no signif-
icant differences between the slopes of any of these
regression lines calculated for males and females
when corrected for the brain size.

The correlation coefficients and p values for
these variables with age for each gender and for the
total group are summarized in Table 3. All the vari-
ables we considered were highly and significantly
correlated with age when ratios were considered
with respect to the total brain volume.

DISCUSSION

A promising method is presented for segmenting
white matter, gray matter, and CSF volumes in MR
head scans using a probabilistic fusion equation. Al-
though simultaneously obtained and thus automat-
ically registered T2 and PD images were not fully
independent, the use of the fusion equation resulted
in accurate segmentation data. Hence, we believe
that the fusion equation gives better estimates of the
probabilities to differentiate tissue volumes combin-
ing information in dual echo images than those
given by individual images. As Fig. 4 illustrates, a
clear distinction among tissue types was seen when
the probabilitics of the tissue types were fused.

Since the segmentation is automated, the method
is free from the subjective errors of operator thresh-
olding prevalent in the previous approaches. Previ-
ous methods combined the two input images to cre-
ate an image that was better or optimal for separa-
tion of gray matter and white matter (9-12), and
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thresholding was performed to separate gray and
white matter. In this report, we describe a some-
what different strategy using a probabilistic data fu-
sion equation that computes a better probability es-
timate of a pixel by combining the probabilities im-
plied by both input images. The parameters of the
probability distributions are obtained by utilizing
the full extent of local pixel intensities as opposed
to simple or *‘idealized”’ distributions using a few
sample points.

When only PD and T2 images are available, white
and gray matter and CSF cannot be fuily separated
(19) using a 2D multispectral analysis. Multispectral
analysis requires at least three uncorrelated images.
Probabilistic fusion equation gives an optimal result
when the input data sets are statistically indepen-

3¢

FIG. 3. Segmented image
slices taken at three different
levels of the brain: gray matter
(a); white matter (b); CSF (c).

dent, while clustering in multidimensional space is
optimum when the input data sets are orthogonal in
the feature space. When registered images are ac-
quired simultaneously using the sequence described
here, it is difficult to obtain purely independent
data. One may want to manipulate TR and TE val-
ues of the scanning parameters to obtain nearly in-
dependent and registered images to get the full ad-
vantage of the fusion equation.

There are unique advantages of this method of
segmentation. Because the method is unsupervised,
it does not need operator selection of training sam-
ples for classification. No parameters are set by the
operator, and the final outcome is less sensitive to
the preset parameters k, and k5. The results are in-
dependent of k. Previous unsupervised techniques
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FIG. 4. Probability maps for tis-
sue categories of individual (a:
proton density; b: T,-weighted)
and (c) fused image slices. in-
tensity at a pixel location in a
probability map represents the
probability of that pixel being
the corresponding tissue type.
Row 1, white matter; row 2, gray
matter; row 3, CSF.

used for the same purpose have not yielded accu-
rate segmentation and were limited to segmentation
of cortical gray and white matter (29,30), as most
previous methods classified some of the subcortical
gray matter nuclei as white matter. The results of
our segmentation were visually correct and all sub-
cortical gray matter nuclei were classified as gray
matter; this method could be easily extended if a
third independent and registered T1 data set were
available. Since it does not assume globai parame-
ters, the method accounts for the image intensity

J Comput Assist Tomogr, Vol. 20, No. 2, 1996
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inhomogeneities. The parameters of the distribu-
tions are locally calculated by considering neigh-
borhood pixels at each pixel location and not
dependent on global distribution of intensity.
Furthermore, the algorithm makes efficient use of
computer processing time and does not require so-
phisticated mathematical modeling software.

The method’s reproducibility was demonstrated
by the acceptable intrarater and interrater reliabili-
ties. The reliability of the method depends only on
the brain shelling portion of the algorithm, which

_
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FIG. 5. a: Plot of white matter volume (ml) against age (yrs). b: Plot of gray matter volume (ml) against age (yrs). ¢: Plot of CSF
volume (ml) against age (yrs). d: Plot of ratio of gray to white matter volume against age (yrs).

may further be improved with better brain shelling
technique. Validation of the method was shown us-
ing both manual tracing technique and phantom
studies. The fusion algorithm gave visually better
segmentation than did the hand-segmented images.
Validation with the phantom was good, as the
errors for the tissues were <5% for all types of
tissues.

There are no reports in our sample’s age group
for comparison with these segmentation data. Pfef-
ferbaum et al. (29) analyzed only cortical gray and

TABLE 3. Correlation of tissue volumes for males, females,

white matter and CSF. Hence, for comparison, we
were limited to the 13 normal adults between age 20
and 30 years. Miller et al. (1) has used fixed brain
sections with digital image analyzer to perform
analogous postmortem studies across ages 20-98
years. For their subset, eight subjects aged 20-30
years, the gray and white matter ratio varied be-
tween 1.12 and 1.5 with a mean of 1.23 (obtained
from the graph for cerebrum only). Lim and Pfef-
ferbaum (11) also segmented subjects aged 20-30
years, obtaining a gray/white matter ratio of 1.12.

and total group

with age
Males Females Total
r p r P r D
Gray volume -0.197 0.242 -0.068 0.665 —-0.028 0.809
White volume 0.254 0.128 0.583 <0.001 0.465 <0.001
CSF volume 0.521 0.001 0.566  <0.001 0.559  <0.001
Gray/brain volume -0.587  <0.001 —0.749  <0.001 -0.697  <0.001
White/brain volume 0.367 0.026 0.618  <0.001 0.524  <0.001
CSF/brain volume 0.529 <0.001 0.543 <0.001 0.550 <0.001
Gray/white volume —0.477 0.003 —-0.682  <0.001 -0.612  <0.001

r denotes the Pearson correlation coefficient.
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Our value of 1.14 for gray/white matter ratio for this
age range closely approximates these previously
published data. Recently, Harris et al. (12) reported
a similar segmentation study with manual thresh-
olding. Their values for the CSF, white matter, and
gray matter percentage for the age range 10-20
years were 5.83, 42.6, and 52.0% (obtained from
regression lines), close to our values of 5.0, 42.9,
and 52.1% for the same variables, respectively.

The volume averaging effect at the boundaries
between gray and white matter and CSF is partially
accounted for by the segmentation algorithm. CSF
appears as the brightest tissue type in T2 images
and the darkest in PD images. In both images, white
matter appears darker than the gray matter. There-
fore, partial volume effects in PD images appear at
the CSF and gray matter boundaries and in T2 im-
ages at the CSF/white matter boundary. When the
images are fused, the partial volume effects par-
tially cancel out at the boundaries, because partial
volume averaging is effective only in one image at
any boundary (see Fig. 4). The pixels that contain
multiple tissue types_in one image usually give a
lower probability compared with “‘pure’’ tissue pix-
els in the other image. So, the pure pixels dominate
in the fusion equation driving the final classifica-
tion. So, incorrect probabilities given by the pixels
containing “‘mixed’’ tissues affect the segmentation
less. Still, partial volume effects are seen at the
brain-background boundary and caused a ringing
effect on our segmented images.

A disadvantage of our present method is the use
of thick slices (5 mm) for segmentation, which can
enhance both partial averaging effects at the bound-
aries of brain and intracranial cavity and errors in
computation of volumes. A phantom study has
shown that the errors in volume computation and
the partial volume effects increase with the thick-
ness of the slices (38). We used the same slice thick-
ness for all the subjects irrespective of their brain
sizes as there was no significant brain size change
with age in our age span (31). Our method was
slowed by the semiautomated approach for brain
shelling and calculation of parameters at every
voxel location. With use of 18 slices, the shelling
and segmentation process takes only ~25 min per
brain on our Sparc 10 workstation; more numerous
thinner slices would, of course, require more time.

In this study, the total brain volume included cer-
ebellum and brain stem. With the segmentation of
MR brain scans of 80 normal children and adoles-
cents, both the white matter and the total brain vol-
ume increased (significantly for females), and the
ratio of gray matter to white matter decreased. The
clear increase in cerebellar volume in this age span
(31), which may account for the increased brain vol-
ume found here, is consistent with earlier findings
of increasing brain weight across our age span
(39,40).

J Comput Assist Tomogr, Vol, 20, No. 2, 1996

At birth, both myelinated and unmyelinated neu-
rons are present in the human brain, and myelina-
tion of neurons continues as the brain develops.
Axon myelination by oligodendrocytes results in an
increase in myelinated white matter (41). Qur fipd-
ings of decreased gray/white matter ratio through
adolescence are consistent with these earlier find-
ings and the recent MR study (30). Visual examina-
tion of segmented images at various age levels
showed us that the growth of white matter or my-
elination did not affect our segmentation over the
large age span. The significant gender difference for
the total brain volume is consistent with autopsy
findings (39,40). When corrected for the brain size,
no gender-specific differences in gray matter or
white matter were noted.

As evident from the scatterplots, there is consid-
erable normal variability of brain tissue volumes,
which remains even after when the age, height, and
weight are controlled (39,40). To overcome this
variability, large data sets, as used, are needed to
detect developmental changes. The method pre-
sented here, which can be applied accurately and
reliably to segment large data sets of MR brain im-
ages, revealed developmentally significant segmen-
tation results consistent with the earlier findings.
Therefore, the method appears promising for stud-
ies of anatomic brain development and its relation
to physiological and behavioral measures. It is be-
ing applied to a longitudinal brain morphological
study.

APPENDIX A

Probabilistic Fusion Equation

For data from independent sensors 51,
8oy u S,.» the probability of an event x, given data
from all the sensors, p(xlsy,s,, . .. ,s,), is given by

Plxisy,s2, . . ., 5,) =

k- pilxlst) - palx|s2) . . . pulx)sy) (A1)

where k is constant depending on sensors and the event x
and p (x|s,) denotes the probability of the event given the
data from the rth sensor s,.

Proof of Probabilistic Fusion Equation

Consider the inputs given by the data from two Sensors
s, and s,. The probability of an event x given information
from both sensors sy and s,, p(xlsl,sz), is as follows:

plx|s1.52) =
P(s1,821%) - p(x
——“17;;;%)—13—) from Bayes theorem (A2)
_ Pils1]x) - Pa(sa|x) - plx) since s, and
P(s1,s2) :
7 are independent (A3)
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_ pix|sy) - Pi(s1) palxis2) - Pa(sy)

pix) paAx)
P from Bayes theorem (A4)
P(sy.52) Y
Pi(s1) - Pas2) - px) ‘
= - pi(x|sy) - palxi (AS)
P P - Plsrsy  PICFIS0 - palxis)
= k- pilx[sp) - palx|s2) (A6)
where

_ P(s1) * Pas2) - p(x)
Pp1(x) - paAx) -« P(sy,52)

is a constant for a given set of sensors and the event.
P(s,,s,) is prior joint probability between the sensors, and
P(s,) and P(s,) are the prior probabilities of the sensors s,
and s,, respectively. p,(x) and p,(x) are the probabilities
of event x seen by the sensors. Hence, the probabilistic
fusion equation is true for two sensors, and similarly it
can be proved for arbitrary »n sensors. The Bayes theorem
is stated and a more elaborate description of the theorem
can be found in ref. 35. :

Rayes Theorem: If a prior probability of a class w is
P(w) and the conditional density of the event x given the
class w is p(x|w), then the posterior probability P(w!x) is
given by

Plw|x) = M) (A7)
plx)

where p(x) is the probability of the event.
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